Radio-Spectroscopic Studies of Magnetic Properties of High Temperature Superconductors*

E. Lippmaa, E. Joon, I. Heinmaa, V. Miidel, A. Miller, and R. Stern Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, Tallinn, Estonia

Z. Naturforsch. 45 a, 401-404 (1990); received August 26, 1989

We have performed $^{17}\mathrm{O}$ and $^{63}\mathrm{Cu}$ NMR measurements in YBa $_2\mathrm{Cu}_3\mathrm{O}_{7-\delta}$ ($\delta\approx0.15$) oriented powder samples at CuO $_2$ plane sites Cu(2) and O(2, 3) in the temperature range 10-300 K. The temperature dependent Knight shift K(T) and spin lattice relaxation rate $T_1^{-1}-(T)$ of O(2, 3) yield $K^2T_1T=$ const in accordance with the presence of free carriers at plane oxygen sites. A sharp decrease of T_1^{-1} of Cu(2) below 120 K is associated with the opening of a gap in the spectrum of antiferromagnetic spin fluctuations of localized copper 3d 9 electrons. The comparison of different temperature dependences of spin densities at the Cu and O sites shows the presence of two nearly independent spin systems. A close similarity of YBa $_2\mathrm{Cu}_3\mathrm{O}_{7-\delta}$ with heavy fermion superconductors is discussed.

Introduction

The electronic states at the Fermi energy (ε_F) play a very important role in studies of the nature and mechanism of high temperature superconductivity (HTSC). According to the data of photoelectron spectroscopy [1], the conductivity band consists predominantly of the 2p states of oxygen, and the 3d states of copper are localized and do not exceed ε_F . On the other hand, copper NMR data show that at $T < T_c$ the components of the magnetic hyperfine shift of copper in the CuO_2 plane site Cu(2) (K_{aa} and K_{bb}) decrease by half while K_{cc} remains constant [2], and the spin-lattice relaxation rate T_1^{-1} of Cu(2) decreases without enhancement below T_c by 2 to 3 orders of magnitude [3, 4]. This has been attributed to opening of the superconducting gap in the spectrum of electronic states of copper.

Oxygen ¹⁷O NMR provided new results [5, 6]:

1) The relaxation rate T_1^{-1} of oxygen O(2, 3) in the plane sites was found to show enhancement just below T_c , as expected for usual singlet S-wave superconductivity [7].

Reprint requests to Prof. E. Lippmaa, Institute of Physics and Biophysics, Estonien Academy of Sciences, Tallinn/Estland.

2) At $T > T_c$, oxygen $T_1^{-1}(T)$ follows the usual Korringa law $T_1^{-1} \propto T$, in accordance with the existence of free carriers at oxygen orbitals [1].

For correct interpretation of the copper NMR results, parallel measurements of ¹⁷O and ⁶³Cu NMR shift and relaxation data using the same sample are essential.

Experimental

The pellet of $YBa_2Cu_3O_{7-\delta}$ was prepared with standard methods. The gas exchange process consisted of removal of 16O from the initial sample and exposing a pellet to 17,18O gas (22 atom% of 17O, 63 atom% of ¹⁸O) at 500 °C during 5 days. The weight increase of the initial pellet (1.7%) suggests a nearly complete exchange of ¹⁶O in all oxygen positions of the lattice. The pellet was crushed into fine powder with the grain size less than 2 µm, mixed with epoxy, and the mixture was hardened in 11.7 T magnetic field during 12 hours. Thus we got a solid sample where the YBa₂Cu₃O_{7- δ} ($\delta \approx 0.15$) microcrystals were oriented with the crystal axis c aligned in one direction. The onset temperature of the superconducting transition in zero field T_c^0 was 91 K. The NMR measurements were performed in the 8.5 T field of a Bruker CXP-360 FT spectrometer. The spin-lattice relaxation times T_1 were calculated from the recovery of the magnetization after a train of saturating pulses. The magnetic shift of Cu(2) was measured from the resonance frequency of solid copper iodide CuI and the magnetic shift of ¹⁷O from that of H₂O.

0932-0784 / 90 / 0300-0401 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Presented at the Xth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, Takayama, Japan, August 22–26, 1989.

Results

The NMR spectrum of the central $(1/2 \leftrightarrow -1/2)$ transition of ⁶³Cu in the Cu(2) site shows the line with the full width at half height FWHH = 70 kHz ($c \parallel H$) and the magnetic shift $K_{cc} = 1.27\%$ at T = 295 K, in excellent agreement with the data measured in YBa₂Cu₃O₇ single crystal [8, 9]. With decreasing temperature the linewidth increases to FWHH = 100 kHz at T = 100 K, but the magnetic shift remains constant with an accuracy of 0.01% in the $T_c < T < 295 \text{ K}$ range. The transverse components of the magnetic shift K_{aa} , $K_{bb} = K_{\perp} = 0.6\%$ in the 120 < T < 295 Krange begin to decrease at T < 120 K and reach the value $K_{\perp} \simeq 0.2\%$ at $T \le 40$ K. The temperature dependence of T_1^{-1} of Cu(2) at the orientation $c \perp H$ is presented in Figure 1. Over the whole temperature range, except the T = 200 to 220 K region, the magnetization recovery function was established to be

$$M(\infty) - M(0) = A e^{-\tau/T_1} + B e^{-6\tau/T_1},$$
 (1)

corresponding to a wholly magnetic relaxation mechanism of the quadrupolar I=3/2 nuclei [10]. The nearly constant relaxation rate T_1^{-1} in the 120 < T < 295 K range with an anomaly between 200 to 220 K closely follows the data for the YBa₂Cu₃O₇ single crystal [11]. A sharp decrease of T_1^{-1} begins below $T^* \simeq 120$ K, some 40 K higher than the transition temperature into the superconducting state at $T_c^{\perp} = 81$ K in the magnetic field used. Between 40 < T < 120 K the relaxation rate $T_1^{-1} \propto T^{\alpha}$ ($\alpha = 3$ to 4). There is a certain instability of T_1^{-1} at T = 100 K, but no anomaly in the vicinity of $T = T_c^{\perp}$ was found.

The NMR spectrum at 295 K of the central transition of ¹⁷O consists of three lines (see Fig. 2), denoted by α , β , and γ . As the spectrum recorded in the $c \parallel H$ orientation should not contain any broadening due to the anisotropy of the quadrupolar and magnetic shift interactions, the intensity ratio 4:2:1 of the lines α , β , and γ , respectively, corresponds to the already established [12, 13] assignment. Therefore the line α corresponds to oxygens in the CuO₂ plane sites O(2, 3), β to the oxygen bridging the CuO planes and chains O(4), and the smeared line γ to the oxygen in the CuO chains, O(1). According to the measured values of the quadrupolar interaction parameters, the frequency shift due to the second order quadrupolar interaction $(c \parallel H)$ is less than 0.01%. Therefore we ignore the quadrupolar contribution to the shift and attribute the frequency shift to the Knight shift component in

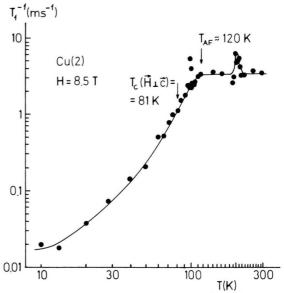


Fig. 1. The temperature dependence of T_1^{-1} of 63 Cu at the Cu(2) site, orientation is $c \perp H$.

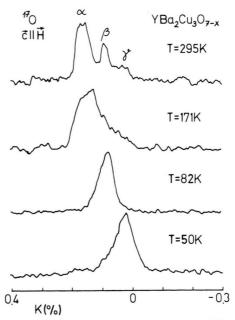


Fig. 2. The temperature dependence of the ¹⁷O NMR spectrum at the orientation $c \parallel H$. We have assigned the α -oxygen to O(2, 3) sites, the β line to the bridge oxygen O(4) and the γ line to the chain oxygen O(1).

the c axis direction. The Knight shift of O(4) oxygens $K \simeq 0.095\%$ does not depend on temperature in the 120 < T < 295 K range. At T < 120 K the overlapping of lines α and β makes the separation of lines impossible. The inhomogeneously broadened line of

O(2, 3) shows a remarkable temperature dependence (Figs. 2 and 3). The Knight shift of the maximum of the line, $K_{\rm M}$, decreases with the decreasing of temperature from $K_{\rm M} \simeq 0.16\%$ at 295 K to $K_{\rm M} \simeq 0.08\%$ at $T_{\rm c}'' = 75$ K. At temperatures between 90 < T < 200 K, $K_{\rm M} \propto T^{0.6}$. The high frequency shoulder at the O(2, 3) line exhibits a constant value of $K_0 \simeq 0.18\%$ between 120 < T < 295 K. At T < 120 K the line of O(2, 3) narrows and the Knight shift of the whole line decreases rapidly to zero in the superconducting state. The temperature dependence of the relaxation rate T_1^{-1} measured at the frequency of $K_{\rm M}$ is shown in Figure 4. At all temperatures the magnetization recovery was approximated by the function

$$M(\infty) - M(\tau) - A e^{-\tau/T_1} + B e^{-6\tau/T_1} + C e^{-15\tau/T_1}$$
, (2)

as expected for a purely magnetic relaxation mechanism for quadrupolar nuclei with spin I = 5/2 [10]. The temperature dependence of the relaxation rate can be described by the function $T_1^{-1}(T) \propto T^{\alpha}$ ($\alpha = 2$ to 3) and shows no maximum below T_c^{α} , in contrast with the opening of a BCS-like gap at the Fermi energy.

Discussion

Inhomogeneous broadening of the O(2, 3) line shows a distribution of spin densities at the O(2, 3) sites which can be caused, as was proposed in [13], by the presence of oxygen deficient clusters of YBa₂Cu₃O_{6.7} type in our sample. The temperature dependence of the Knight shift $K_{\rm M} \propto T^{0.6}$ is in accordance with the temperature dependence of the density of states in the case of a linear temperature dependence of the concentration of carriers within a closed Fermi surface. According to the Korringa relation for free carriers, K^2T_1T is constant. In our case, the $K_{\rm M}$ temperature dependence yields $T_1^{-1} \propto T^{2.2}$ in rough agreement with the dependence shown in Figure 4. Therefore we can conclude that the data of ¹⁷O NMR correspond to the case of free carriers at O(2, 3) orbitals.

The sharp decrease of the relaxation rate T_1^{-1} of copper in the Cu(2) site was already reported for YBa₂Cu₃O_{6.7} [14] below $T^* \simeq 100 \text{ K} > T_c$. We believe that the temperature T^* cannot be attributed to the opening of the superconductivity gap. Most probably the gap is opening at $T = T^*$ in the spectrum of copper antiferromagnetic fluctuations, because the main relaxation mechanism of Cu(2) is due to the quantum mechanical fluctuations of localized $3d^9$

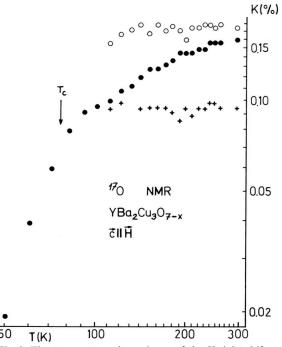


Fig. 3. The temperature dependence of the Knight shifts of $^{17}\mathrm{O}$ in the O(4) site (+) and in the O(2, 3) sites (o: the high frequency edge, K_0 ; \bullet : the maximum of the line, K_{M}).

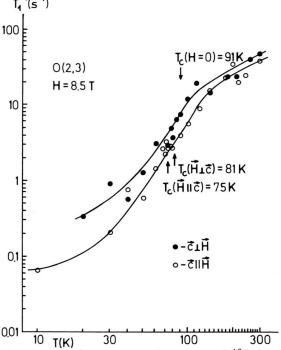


Fig. 4. The T_1^{-1} temperature dependence of $^{17}\mathrm{O}$ in the O(2, 3) site, measured at K_M .

electrons [8]. This circumstance underlines the close similarity of the phenomenon of HTSC to the superconductivity in heavy fermion compounds (e.g. $CeCu_2Si_2$), where at $T^* > T_c$ the correlation gap opens and in the superconducting phase the nuclear spin-lattice relaxation rate T_1^{-1} follows the T^3 law

- [1] H. Katayama-Yoshida, T. Takahashi, H. Matsuyama, Y. Okabe, Y. Kitaoka, K. Ishida, K. Asayama, H. Fujimoto, and H. Inokuchi, Int. J. Modern Phys. B1, 1273
- [2] M. Tákigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, J. L. Smith, and R. B. Schwarz, Phys. Rev. B 39, 300 (1989).
- [3] M. Mali, D. Brinkmann, L. Pauli, J. Roos, H. Zimmermann, and Hulliger, J. Phys. Lett. A 124, 112 (1987).
 [4] T. Imai, T. Shimizu, T. Tsuda, H. Yasuoka, T. Taka-
- [4] T. Imai, T. Shimizu, T. Tsuda, H. Yasuoka, T. Taka-batake, Y. Nakazawa, and M. Ishikawa, J. Phys. Soc. Japan 57, 1771 (1988).
- [5] K. Ishida, Y. Kitaoka, K. Asayama, H. Katayama-Yoshida, Y. Okabe, and T. Takahashi, J. Phys. Soc. Japan 57, 2897 (1988).
- [6] P. Wzietek, D. Köngeter, P. Auban, D. Jérome, J. P. Contures, B. Dubois, and Ph. Odier, Europhys. Lett. 8, 363 (1989).
- [7] The latest result of P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett., in press, show no enhancement of T_1^{-1} below T_c for the O(2, 3) site.
- [8] C. H. Pennington, D. J. Durand, C. P. Slichter, J. P. Rice, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 39, 274 (1989); ibidem, 2902 (1989).

[15]. In the absence of the correlation gap the superconductivity does not occur in these systems [16]. Taken together, all this means a magnetic mechanism of high temperature superconductivity in doped CuO_2 layers.

- [9] I. A. Heinmaa, A. M. Vainrub, J. O. Past, V. O. Miidel, A. V. Miller, I. F. Štšegolev, and G. A. Jemeltšenko, Pis'ma v JETP 48, 171 (1988).
- [10] A. Narath, Phys. Rev. 162, 320 (1967).
- [11] A. V. Miller, A. M. Vainrub, I. A. Heinmaa, A. V. Reinhold, E. T. Lippmaa, and I. F. Štšegolev, Pis'ma v JETP 49, 211 (1989).
- [12] C. Coretsopoulos, H. C. Lee, E. Ramli, L. Reven, T. B. Rauchfuss, and E. Oldfield, Phys. Rev. B 39, 781 (1989).
- [13] M. Horvatić, Y. Berthier, P. Butand, Y. Kitaoka, P. Segransan, C. Berthier, H. Katayama-Yoshida, Y. Okabe, and T. Takahashi, Physica C, submitted.
 [14] W. W. Warren, Jr., R. E. Walstedt, G. F. Brennert, R. J.
- [14] W. W. Warren, Jr., R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).
- [15] Y. Kitaoka, K. Ueda, T. Kohara, and K. Asayama, Solid State Commun. 51, 461 (1984).
- [16] F. Steglich, in: Theory of heavy fermions and valence fluctuations (T. Kasuya and T. Saso, eds.), Springer-Verlag, Berlin 1985.